

Organizacja IX Konferencji Modelowanie Matematyczne w Fizyce i Technice (MMFT 2017) - zadanie finansowane w ramach umowy 829/P-DUN/2017 ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę.

FREE VIBRATION OF EULER-BERNOULLI BEAMS MADE OF AXIALLY FUNCTIONALLY GRADED MATERIALS

Jowita Rychlewska, Institute of Mathematics, Czestochowa University of Technology

INTRODUCTION

Functionally graded (FG) beams are composites characterized by the volume fraction of different materials which is varied continuously with the thickness and/or the length of the beam. Through an appropriate selection of the volume fraction the FG beam with expected thermal and mechanical properties can be obtained. Therefore, the FG beams can be used in various engineering applications.

In this study the solution to the free vibration problem of axially graded beams with a nonuniform cross-section has been presented. The proposed approach relies on replacing of the functions characterizing the functionally graded beams by piecewise exponential functions. The frequency equation has been derived for axially graded beams divided into an arbitrary number of subintervals. Numerical examples show the influence of the parameters of the functionally graded beams on the free vibration frequencies for different boundary conditions.

FORMULATION OF THE PROBLEM

The governing equation

 $\frac{d^2}{d\xi^2} \left[E(\xi)I(\xi)\frac{d^2W}{d\xi^2} \right] - L^4\omega^2\rho(\xi)A(\xi)W = 0, \quad 0 < \xi < 1$

- $W(\xi)$ the amplitude of vibration
- $E(\xi)$ the modulus of elasticity
- $I(\xi)$ the moment of inertia
- $ho(\xi)$ the material density
- $A(\xi)$ the cross-section area
- arnothing the circular frequency of vibration
- L the length of beam

Basic assumptions

Assumption 1

 $E(\xi)I(\xi) = d_0g(\xi)$ $\rho(\xi)A(\xi) = m_0h(\xi), \quad 0 < \xi < 1$

where

$$\begin{split} &d_0 = E(0)I(0), \ m_0 = \rho(0)A(0) \\ &g(\xi) \cong d_i e^{2\beta\xi} \\ &h(\xi) \cong m_i e^{2\beta\xi} \qquad \qquad \xi_{i-1} < \xi < \xi_i, \quad i = 1, ..., n \end{split}$$

Assumption 2

 $g(\xi_{i-1}) = d_i e^{2\beta_i \xi_{i-1}}$ $g(\xi_i) = d_i e^{2\beta_i \xi_i}$ $g(\xi_0) = 1 \qquad i = 1, ..., n$ $h\left(\frac{\xi_i + \xi_{i-1}}{2}\right) = m_i e^{\beta_i (\xi_i + \xi_{i-1})}$ $h(\xi_0) = 1$

Hence

$$\begin{split} \beta_{i} &= \frac{1}{2(\xi_{i} - \xi_{i-1})} \ln \frac{g(\xi_{i})}{g(\xi_{i-1})} \\ d_{i} &= g(\xi_{i}) e^{-2\beta_{i}\xi_{i}} \\ m_{i} &= h \bigg(\frac{\xi_{i} + \xi_{i-1}}{2} \bigg) e^{-\beta_{i}(\xi_{i} + \xi_{i-1})} \end{split}$$

SOLUTION TO THE PROBLEM

Denotations

$$\begin{split} W(\xi) = W_i(\xi) & \xi_{i-1} < \xi < \xi_i \\ \Omega^2 = \frac{m_0 m_1}{d_0 d_1} L^4 \omega^2 \\ \mu_i^2 = \frac{m_i d_1}{m_i d_i} \end{split}$$

The governing equation for i-th segment

$$\frac{d^2}{d\xi^2} \left[e^{2\beta_i \xi} \frac{d^2 W_i}{d\xi^2} \right] - \Omega^2 \mu_i^2 e^{2\beta_i \xi} W_i = 0 \quad \begin{cases} \xi_{i-1} < \xi < \xi_i \\ i = 1, \dots, n \end{cases}$$

Continuity conditions

$$\begin{split} W_{i}(\xi_{i}) &= W_{i+1}(\xi_{i}) \qquad \frac{dW_{i}}{d\xi}(\xi_{i}) = \frac{dW_{i+1}}{d\xi}(\xi_{i}) \\ i &= 1, \dots, n-1 \\ \frac{d^{2}W_{i}}{d\xi^{2}}(\xi_{i}) = \frac{d^{2}W_{i+1}}{d\xi^{2}}(\xi_{i}) \qquad \frac{d^{3}W_{i}}{d\xi^{3}}(\xi_{i}) = \frac{d^{3}W_{i+1}}{d\xi^{3}}(\xi_{i}) \end{split}$$

Boundary conditions

Clamped-clamped beam (C-C)

$$W_1(0) = 0, \ \frac{dW_1}{d\xi}(0) = 0, \ W_n(1) = 0, \ \frac{dW_n}{d\xi}(1) = 0$$

Pinned-pinned beam (P-P)

$$W_1(0) = 0, \ \frac{d^2 W_1}{d\xi^2}(0) = 0, \ W_n(1) = 0, \ \frac{d^2 W_n}{d\xi^2}(1) = 0$$

Clamped-pinned beam (C-P)

$$W_1(0) = 0, \ \frac{dW_1}{d\xi}(0) = 0, \ W_n(1) = 0, \ \frac{d^2W_n}{d\xi^2}(1) = 0$$

Pinned-clamped beam (P-C)

$$W_1(0) = 0, \ \frac{d^2 W_1}{d\xi^2}(0) = 0, \ W_n(1) = 0, \ \frac{d W_n}{d\xi}(1) = 0$$

Clamped-free beam (C-F)

$$W_1(0) = 0, \frac{dW_1}{d\xi}(0) = 0, \frac{d^2W_n}{d\xi^2}(1) = 0, \frac{d}{d\xi} \left(e^{2\beta\xi} \frac{d^2W_n}{d\xi^2} \right) (1) = 0$$

Free-clamped beam (F-C)

$$\frac{d^2 W_1}{d\xi^2}(0) = 0, \frac{d}{d\xi} \left(e^{2\beta\xi} \frac{d^2 W_1}{d\xi^2} \right)(0) = 0, W_n(1) = 0, \frac{d W_n}{d\xi}(1) = 0$$

The general solutions

 $W_i(\xi) = e^{-\beta_i \xi} \left(A_i \cos \delta_i \xi + B_i \sin \delta_i \xi + C_i \cosh \overline{\delta}_i \xi + D_i \sinh \overline{\delta}_i \xi \right)$ $\xi_{i-1} < \xi < \xi_i, \qquad i = 1, ..., n$

where

where

$$\delta_i = \sqrt{\mu_i \Omega - \beta_i^2}, \ \overline{\delta_i} = \sqrt{\mu_i \Omega + \beta_i^2}, \ A_i, B_i, C_i, D_i \in R$$

The system of linear equations

 $\mathbf{A}(\boldsymbol{\omega}) \cdot \mathbf{X} = \mathbf{0}$

$$\mathbf{X} = [A_1, B_1, C_1, D_1, ..., A_n, B_n, C_n, D_n]^T$$

 $\mathbf{A}(\boldsymbol{\omega}) = [a_{kj}]_{4n \times 4n}$

The condition for non-trivial solution

 $\det \mathbf{A}(\omega) = 0$

NUMERICAL RESULTS

Table 1 The first three non-dimensional free vibration frequencies for $g(\xi)=(1+\gamma\xi)^3$, $h(\xi)=1+\gamma\xi$, clamped-clamped beam

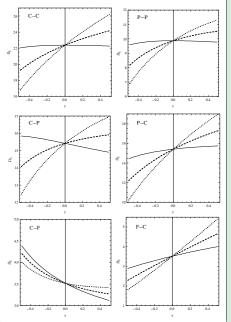
Y	Power series method	Huang, Li (2010)	Present
-0.1	21.2409777868	21.24097778688	21.242905
	58.5500545739	58.55005461550	58.567526
	114.780241659	114.78027750905	114.824704
0	22.3732854478	22.37328544806	22.373285
	61.6728228676	61.67282294761	61.672823
	120.903391727	120.90340027002	120.903392
0.1	23.4796072481	23.47960724845	23.460013
	64.7210676329	64.72106768601	64.678046
	126.878016311	126.87805071630	126.802905
0.2	24.5634175322	24.5634175326	24.508817
	67.7047553171	67.7047553184	67.596273
	132.723976757	132.7240684027	132.546612

Table 2 The first three non-dimensional free vibration frequencies for $g(\xi)=(1+\gamma\xi)^3$, $h(\xi)=1+\gamma\xi$, clamped-pinned beam

Y	Power series method	Huang, Li (2010)	Present
-0.1	14.8488960557	14.84889605539	14.844562
	47.6370371901	47.63703719174	47.647237
	99.171635183	99.17165323722	99.206918
0	15.4182057169	15.41820571698	15.418206
	49.964862032	49.96486203816	49.964862
	104.247696458	104.24770194514	104.247696
0.1	15.968709884	15.96870988416	15.950015
	52.2372268871	52.23722689317	52.198883
	109.202352455	109.20235370558	109.134912
0.2	16.5028988943	16.50289889399	16.445277
	54.4614625302	54.46146253076	54.360368
	114 051623344	114 05163085534	113 888586

Huang Y., Li X.-F., 2010, A new approach for free vibration of axially functionally graded beams with non-uniform cross-section, *Journal of Sound and Vibration*, **329**, 2291-2303

Fig.1 The first non-dimensional free vibration frequency as a function of γ for α =1 (solid line), α =2 (dashed line), α =3 (dotted line) for different boundary conditions, $g(\xi)$ =(1+ $\gamma\xi)^{\alpha}$, $h(\xi)$ = 1+ $\gamma\xi$



CONCLUSIONS

In this study a new method, which is capable of computing the free vibration frequencies of axially functionally graded beams is presented. An exact solution is derived for the axially piece-wise exponential graded beams with various combinations of clamped, pinned and free ends. A high agreement of the numerical results obtained by using the presented method with the results obtained by using the power series method, as well as with results given by other authors was also observed.

